TOTAL CURVATURE AND TOTAL ABSOLUTE CURVATURE OF IMMERSED SUBMANIFOLDS OF SPHERES #### J. L. WEINER ### 1. Introduction Let M^n be a compact oriented n-dimensional immersed Riemannian submanifold of the (n+k)-dimensional Euclidean unit sphere S^{n+k} $(k \ge 1)$, and let $p \in S^{n+k}$. Let $\nu(M)$ be the bundle of unit vectors normal to M in S^{n+k} . We define the Gauss map, based at $p, e_p \colon \nu(M) \to S_p S^{n+k}$, where $S_p S^{n+k}$ is the unit sphere in the tangent space $T_p S^{n+k}$ to S^{n+k} at p. We investigate the integral over M of the pullback and the absolute value of the pullback of the normalized volume element of $S_p S^{n+k}$ under e_p . These integrals are called the total curvature and the total absolute curvature of M with respect to the base point p, respectively. Let -p be the antipode of p in S^{n+k} . If $-p \notin M$, we prove that the total curvature of M with respect to p is the Euler-Poincaré characteristic of M. In addition, if $-p \notin M$, the total absolute curvature of M with respect to p satisfies results similar to those of Chern and Lashof for the total absolute curvature of immersed submanifolds of Euclidean space. If $-p \in M$, and M is even dimensional, then we prove that the total curvature of M with respect to p equals the Euler-Poincaré characteristic less twice the number of times M passes through -p. The total absolute curvature with respect to p is also studied when $-p \in M$. Finally, we consider the average of the total absolute curvatures of M over all base points p in S^{n+k} . Small n-spheres of S^{n+k} for n=1,2 are characterized by means of this average. Throughout this paper all manifolds are C^{∞} , and by a differentiable map we mean a C^{∞} differentiable map. A superscript is used to denote the dimension of a manifold, so that M^n is an *n*-dimensional manifold. We use \langle , \rangle for the Riemannian metric on the Euclidean sphere or any submanifold of the sphere with the induced metric. Received November 9, 1972, and in revised form, October 1, 1973. #### 2. Definitions Let S^n be a Euclidean unit sphere, and fix $p \in S^n$. Let -p denote the antipode of p. **Lemma 1.** (1) Let $v \in T_q S^n$ and $q \neq -p$. Then the parallel translate of v to p along any geodesic from q to p is independent of the geodesic. (2) Let $v \in T_{-p}S^n$. Let $v^{\perp} = \{u \in T_{-p}S^n : \langle u, v \rangle = 0 \rangle\}$. Then the parallel translate of v to p along any geodesic from -p to p with initial velocity in v^{\perp} is independent of the geodesic. Proof. The proofs of (1) and (2) are straightforward. Let M^n be an immersed submanifold of S^{n+k} . Define $e_p \colon \nu(M) \to S_p S^{n+k}$ as follows: Let $v \in \nu_q(M)$, that is, let v be a unit vector normal to M at q. If $q \neq p$, let $e_p(v)$ be the parallel translate of v to p along any geodesic from q to p; if q = -p, let $e_p(v)$ be the parallel translate of v to p along any geodesic with initial velocity in $T_q M$. By Lemma 1, the map e_p is well defined. **Lemma 2.** $e_p: \nu(M) \to S_p S^{n+k}$ is continuous and differentiable on $\nu(M) |M \setminus \{-p\}$. Proof. The proof is straightforward. Let $d\alpha^n$ be the volume element of S^n normalized so that $$\int_{S^n} d\alpha^n = 1 ,$$ for all positive integers n. According to the preceding paragraphs, if M^n is a compact oriented immersed submanifold of S^{n+k} , we may globally define the Gauss map on M with respect to any base point p. If $-p \in M$ for some $p \in S^{n+k}$, then $e_p : \nu(M) \to S_p S^{n+k}$ is continuous but needs only to be differentiable on $\nu(M) |M \setminus \{-p\}$. Hence $e_p^*(d\alpha^n)$ and $|e_p^*(d\alpha^n)|$ are defined on $\nu(M) |M \setminus \{-p\}$. Since $\nu(M) |\{-p\}$ is a set of measure zero we may integrate these forms over $\nu(M)$. Definition. Set $$\kappa_p(M) = \int_{\nu(M)} e_p^*(d\alpha^n) , \qquad \tau_p(M) = \int_{\nu(M)} |e_p^*(d\alpha^n)| .$$ We call $\kappa_p(M)$ the total (algebraic) curvature of M with respect to p, and $\tau_p(M)$ the total absolute curvature of M with respect to p. Clearly $\kappa_p(M)$ equals the algebraic normalized volume covered by e_p . Since e_p is a continuous map from a compact oriented manifold into a compact oriented manifold and both have the same dimension, e_p has a degree and this degree is $\kappa_p(M)$. In particular, note that $\kappa_p(M)$ is integral whether or not $-p \in M$. Moreover, $\tau_p(M)$ is the normalized volume covered by e_p , and because the volume is normalized $\tau_p(M)$ equals the average number of times any vector in S_pS^{n+1} is taken on by e_p . Let N^n be an oriented immersed submanifold of E^{n+k} , and $\nu(N)$ the bundle of unit vectors normal to N in E^{n+k} . Then we have the usual Gauss map $e \colon \nu(M) \to S_0^{n+k-1}$, where S_0^{n+k-1} is the unit sphere in E^{n+k} with center 0. The total curvature and total absolute curvature of N in E^{n+k} are defined as above and are denoted $\kappa(N)$ and $\tau(N)$, respectively. The definition for $\tau(N)$ agrees with the one in [3]. 3. $$\kappa_p(M)$$ and $\tau_p(M)$ for $-p \notin M$ Isometrically imbed S^{n+k} in E^{n+k+1} . Let $\sigma_p: S^{n+k} \setminus \{-p\} \to E^{n+k}$ be stereographic projection from -p onto the tangent hyperplane E^{n+k} to S^{n+k} at p. For an oriented immersed submanifold M^n of S^{n+k} , set M(p) equal to the image of $M \setminus \{-p\}$ under σ_p . Let M(p) carry the metric induced from E^{n+k} . We now restate Lemma 5 of [8] for arbitrary positive codimension. **Lemma 3.** Let M^n be an immersed submanifold of S^{n+k} . Then the following diagram is commutative: $$\begin{array}{ccc} \nu(M) \mid M \setminus \{-p\} & \xrightarrow{e_p} S_p S^{n+k} \\ \sigma_p^* \downarrow & & \downarrow d\sigma_p \\ \nu(M(p)) & \xrightarrow{e} S_0^{n+k-1} \end{array}$$ It is clear that σ_p^* and $d\sigma_p \colon S_p S^{n+k} \to S_0^{n+k-1}$ are diffeomorphisms. Thus if M(p) is given the orientation induced from $M \setminus \{-p\}$ by σ_p , the algebraic volumes covered by e and e_p are equal. Hence $\kappa(M(p)) = \kappa_p(M)$. It is equally clear that $\tau(M(p)) = \tau_p(M)$. Note that for a compact oriented immersed submanifold M of S^{n+k} , M(p) is a compact oriented immersed submanifold of E^{n+k} if $-p \notin M$. If $-p \in M$, then M(p) is a complete open oriented immersed submanifold of E^{n+k} . **Theorem 1.** Let M^n be a compact oriented immersed submanifold of S^{n+k} , and suppose $-p \notin M$. Then $\kappa_p(M) = \chi(M)$ where $\chi(M)$ is the Euler-Poincaré characteristic of M. *Proof.* Since $-p \notin M$, $M \setminus \{-p\} = M$ and hence M and M(p) are diffeomorphic under σ_p . In particular, M and M(p) are topologically equivalent. Hence $\kappa_p(M) = \kappa(M(p)) = \chi(M)$, where the second equality is the Gauss-Bonnet theorem. **Definition.** We say that the submanifold \sum^m of S^n is a small *m*-sphere if for any (and hence every) imbedding of S^n into E^{n+1} we have $\sum^m = S^n \cap L^{m+1}$, where L^{m+1} is an (m+1)-dimensional plane in E^{n+1} . For m=1, we say that \sum^n is a small circle. Note that every metric hypersphere of S^n is a small hypersphere of S^n and conversely. **Theorem 2.** Let M^n be a compact oriented immersed submanifold of S^{n+k} . Let $p \in S^{n+k}$ and suppose $-p \notin M$. Then we have the following. - (1) $\tau_p(M) \geq \beta(M)$ where $\beta(M)$ is the sum of the Betti numbers of M. - (2) $\tau_p(M) < 3$ implies M is homeomorphic to S^n . - (3) $\tau_p(M) = 2$ implies M is imbedded as a hypersurface of a small (n+1)-sphere $\sum_{n=0}^{\infty} through p$. *Proof.* (1) We know that M and M(p) are topologically equivalent under σ_p . Hence $\tau_p(M) = \tau(M(p)) \ge \beta(M(p)) = \beta(M)$, where the inequality in this chain is due to Chern and Lashof [4]. (2) and (3) are proved in a similar fashion. 4. $$\kappa_p(M)$$ and $\tau_p(M)$ for $-p \in M$ Throughout this section we suppose M^n is a compact oriented immersed submanifold of S^{n+k} . We want to investigate $\kappa_p(M)$ and $\tau_p(M)$ under the assumption $-p \in M$. If N^n is an oriented immersed submanifold of E^{n+k} , then $\kappa(N) = 0$ for n odd whether or not N is compact. Hence for M^n with n odd we have $\kappa_p(M) = \kappa(M(p)) = 0 = \chi(M)$ whether or not $-p \notin M$. If M^{2n} is a compact oriented immersed submanifold of S^{2n+k} and $-p \in M$ for some $p \in S^{2n+k}$, then $\kappa_p(M)$ may not be (in fact, is not) equal to the Euler-Poincaré characteristic of M. For example, let M^{2n} be a small hypersphere through $-p \in S^{2n+1}$. Then the rank of $e_p: \nu(M) \to S_p S^{2n+1}$ is zero; see, for example, [8, Theorem 6]. Hence $\kappa_p(M) = 0 \neq 2 = \chi(M)$. For a compact immersed submanifold M^n of S^{n+k} and $q \in S^{n+k}$, let $\sharp q(M)$ equal the number of times M passes through q. We have the following theorem. **Theorem 3.** Let M^n be a compact oriented immersed submanifold of S^{n+k} and let $p \in S^{n+k}$. Suppose n is even and $-p \in M$. Then $$\kappa_p(M) = \chi(M) - 2\sharp_{-p}(M) .$$ *Proof.* Let $f: M^n \to S^{n+k}$ be the immersion of M^n into S^{n+k} . Let $f^{-1}(-p) = \{q_1, \dots, q_r\}$. Consider $f_t: M^n \to S^{n+k}$, $0 \le t \le 1$, a continuous deformation of f, i.e., $f_0 = f$ and f_t is an immersion for $0 \le t \le 1$. Suppose this deformation has the following properties: - (i) $f_t^{-1}(-p) = f^{-1}(-p)$, for $0 \le t \le 1$, and - (ii) $(f_{i*})_{q_i} = (f_*)_{q_i}$, for $0 \le t \le 1$, and $i = 1, \dots, r$. Denote $f_t(M)$ by M_t , $0 \le t \le 1$. Then $\kappa_p(M_t)$ varies continuously with t. However, we observed earlier that $\kappa_p(M)$ is integral for all compact oriented immersed submanifolds M^n of S^{n+k} . Thus $\kappa_p(M_t)$ remains fixed under deformations of the type described. We may therefore assume that f is totally geodesic in a sufficiently small neighborhood about $q_i, i = 1, \dots, r$, if we are only concerned with computing $\kappa_p(M)$. For a sufficiently small sphere S_{ϵ} sbout -p on S^{n+k} , bounding a ball B_{ϵ}^{n+k} on S^{n+k} , the intersection $f(M) \cap B_{\epsilon}$ consists of flat discs $f(B_i^n)$, with $q_i \in B_i^n$. Under stereographic projection σ_{-p} of $f(M \setminus \bigcup_{n=i}^r B_i)$ into E^{n+k} , the boundary spheres ∂B_i^n are mapped into the sphere $\sigma_{-p}(S_i)$ and each is a great (n-1)-dimensional sphere, and σ_{-p} maps $f(B_i^n \setminus q_i)$ into n-planes. We may then find convex n-dimensional surfaces $\sum_{i=1}^n each$ with a disc removed in the exterior of $\sigma_{-p}(S_i)$ so that $\kappa(\sum_i) = 2$, and so that $(\sigma_{-p} \circ f)(M \setminus \bigcup_{i=1}^r B_i) \cup (\bigcup_{i=i}^r \sum_{i=1}^r Q_i)$ is a smoothly immersed n-manifold in E^{n+k} , homeomorphic to M. Now $\kappa_p(f(M \setminus \bigcup B_i)) = \kappa_p(M)$ since $f(B_i)$ is part of a totally geodesic sphere through -p. Hence $$\kappa_{p}(M) = \kappa_{p} \left(f\left(M \setminus \bigcup_{i=1}^{r} B_{i}\right) \right) = \kappa \left(\sigma_{-p} \circ f\left(M \setminus \bigcup_{i=1}^{r} B_{i}\right) \right)$$ $$= \kappa \left[\sigma_{-p} \circ f\left(M \setminus \bigcup_{i=1}^{r} B_{i}\right) \cup \left(\bigcup_{i=1}^{r} \sum_{i}\right) \right] - \kappa \left(\bigcup_{i=1}^{r} \sum_{i}^{n}\right)$$ $$= \chi(M) - 2 \sharp_{-p}(M) . \quad \text{q.e.d.}$$ For $A \subset S^n$, let $-A = \{-q \colon q \in A\}$. Let M^n be a compact oriented immersed submanifold of S^{n+k} . It is clear that the function $p \to \tau_p(M)$ is continuous on $S^{n+k} \setminus (-M)$. Equivalently, $\tau_p(M)$ varies continuously as we move M by a continuous 1-parameter family of isometries of S^{n+k} provided at no time $-p \in M$. However, $p \to \tau_p(M)$ is not continuous on S^{n+k} . For example, let M be a small n-sphere in S^{n+1} ; if $p \in S^{n+1} \setminus (-M)$, then $\tau_p(M) = 2$, but if $p \in -M$, then $\tau_p(M) = 0$. The preceding example and Theorem 3 suggest the following. **Conjecture.** Let M^n be a compact oriented immersed submanifold of S^{n+k} . The function $$p \rightarrow \tau_p(M) + 2 \sharp_{-p}(M)$$ is continuous on S^{n+k} . We can, however, prove a special case of this conjecture. Let $f: M \to S^{n+k}$ be the immersion of M into S^{n+k} . Suppose $f^{-1}(-p) = \{q_1, \dots, q_r\}$, where r > 0. Let $\varphi_t, 0 \le t \le 1$, be a differentiable 1-parameter family of isometries of S^{n+k} with $\varphi_0 = \text{id}$. Define $\varphi: M \times [0,1] \to S^{n+k}$ by $\varphi(q,t) = \varphi_t(f(q))$; φ is differentiable. Set $M_t = \varphi_t(f(M))$. **Theorm 4.** If $M_t \cap \{-p\} = \emptyset$, $0 < t \le 1$, and φ is regular at $(q_i, 0)$, $i = 1, \dots, r$, then (1) $$\tau_p(M) + 2 \sharp_{-p}(M) = \lim_{t \to 0} \tau_p(M_t) .$$ Sketch of proof. Consider the directed dilitation of S^{n+k} along -p, denoted by $S_*^{n+k}(p)$. Now $S_*^{n+k}(p) = S^{n+k} \setminus \{-p\} \cup S_{-p}S^{n+k}$ is a differentiable manifold with boundary $S_{-p}S^{n+k}$, [5]. Also consider the directed dilitation of $M \times [0, 1]$ along $\{(q_1, 0), \dots, (q_r, 0)\}$, denoted by $(M \times [0, 1])_*$. Here $(M \times [0, 1])_* = M \times [0, 1] \setminus \{(q_1, 0), \dots, (q_r, 0)\} \cup \bigcup_{i=1}^r G_i$, where $G_i = \{v \in S_{(q_i, 0)}M \times [0, 1]:$ $\langle v, \partial/\partial t_{(q_i,0)} \rangle \geq 0$, \langle , \rangle being the product metric on $M \times [0,1]$. φ induces a map $\Phi: (M \times [0,1])_* \to S_*^{n+k}(p)$ since φ is regular at $(q_i,0), i=1,\cdots,r$. There is a natural map ι : $(M \times [0,1])_* \to M \times [0,1]$ such that ι is the identity of $\bigcup_{i=1}^r G_i$ and $\iota \mid G_i = (q_i,0), \ i=1,\cdots,r.$ Let $\nu(M_t)$ be the bundle of unit vectors normal to M_t in S^{n+k} . Set $\nu(M \times [0,1]) = \bigcup_{0 \le t \le 1} \nu(M_t)$; this is a bundle over $M \times [0,1]$. Let $\mu = \iota^* \nu(M \times [0,1])$. We may define a Gauss map $e \colon \mu \to S_p S^{n+k}$ so that $e \mid \nu(M_t), \ 0 < t \le 1$, and $e \mid \nu(M \setminus \{q_1, \cdots, q_r\})$ are the usual Gauss maps based at p. For the pair $(v,u) \in \mu \mid G_i = G_i \times \nu_{q_i}(M), e(v,u)$ is the parallel translate of u to p along the geodesic with initial velocity $\Phi(v)$. Now $e \colon \mu \to S_p S^{n+k}$ is differentiable. Define $g: \mu \to R$ such that - (i) $g|\nu(M_t) = |\text{Jacobian } e|\nu(M_t)|, 0 < t \le 1,$ - (ii) $g | \nu(M \setminus \{q_1, \dots, q_r\}) = | \text{Jacobian } e | \nu(M \setminus \{q_1, \dots, q_r\}) |$ - (iii) $g|(\mu|G_i) = |\text{Jacobian } e|(\mu|G_i)|$. Then g is continuous almost everywhere and bounded. Using measure theoretic techniques, one may show $$\lim_{t \to 0} \int_{\nu(M_t)} g \, | \, \nu(M_t) \, = \int_{\nu(M)} g \, | \, \nu(M) \, + \, \sum_{i=1}^{\tau} \int_{\mu \mid G_i} g \, | \, (\mu \, | \, G_i) \, \, .$$ The integral $\int_{\mu|G_i} g \mid (\mu \mid G_i)$ depends only on $T_{q_i}M$ and $\varphi_*(\partial/\partial t_{(q_i,0)})$. Hence one shows by letting M be a small n-sphere in S^{n+k} that $\int_{\mu|G_i} g \mid (\mu \mid G_i) = 2$. Hence (1). For details (in the codimension 1 case) see the author's thesis [9, Chapter IV]. #### 5. Another theorem Let M^n be a compact oriented immersed submanifold of Euclidean space E^{n+k} $(1 \le k)$. Suppose there exists an (n+l)-plane E^{n+l} $(1 \le l \le k)$ in E^{n+k} , which contains M^n . Then it is known that the total absolute curvatures of M^n regarded as a submanifold of E^{n+l} and E^{n+k} are the same. We prove a corresponding result for submanifolds of spheres in this section, and will give an application of this result in the next section. In the following theorem we consider a compact oriented immersed submanifold M^n of S^{n+k} , which is contained in a small (n+l)-sphere \sum^{n+l} , $(1 \le l \le k)$. For $p \in S^{n+k}$ let $\tau_p(M, S^{n+k})$ be the total curvature of M as a submanifold of S^{n+k} with respect to the base point p. For $p \in \sum^{n+l}$ let $\tau_p(M, \sum^{n+l})$ be the total curvature of M as a submanifold of \sum^{n+l} with respect to the base point p. **Theorem 5.** Let M^n be a compact oriented immersed submanifold of S^{n+k} . Suppose $p \in S^{n+k}$, and M is contained in a small (n+l)-sphere $\sum_{i=1}^{n+l} (1 \le l \le k)$ containing -p. Let p' = -(-p) in $\sum_{n=1}^{n+1}$, that is, p' is the antipode of -p in $\sum_{n=1}^{n+1}$. Then $\tau_p(M, S^{n+k}) = \tau_{p'}(M, \sum_{n=1}^{n+1})$. Proof. Isometrically imbed S^{n+k} into E^{n+k+1} . Then we have the stereographic projection $\sigma_p \colon S^{n+k} \setminus \{-p\} \to E^{n+k}$ from -p onto E^{n+k} , the (n+k)-dimensional plane in E^{n+k+1} tangent to S^{n+k} at p. Let L be the (n+l+1)-dimensional plane E^{n+k+1} such that $L \cap S^{n+k} = \sum_{n+k} Since -p \in \sum_{n+l} S^{n+l}$, under σ_p the small sphere $\sum_{n+l} S^{n+l} = \sum_{n+l} S^{n+k} = \sum_{n+l} S^{n+l} S^{n$ The small sphere $\sum_{n=1}^{n+l}$ is imbedded as a metric sphere in L. Let σ_{p_i} : $\sum_{n=1}^{n+l} \{-p\} \to L'$ be the stereographic projection in L from -p onto L'. Even though L', in general, is not tangent to $\sum_{n=1}^{n+l}$ at p', Lemma 3 still holds. Hence, if we set $M(p') = \sigma_{p'}(M \setminus \{-p\})$, we have $\tau_{p'}(M, \sum_{n=1}^{n+l}) = \tau(M(p'), L')$, the total curvature of M(p') as a submanifold of L'. Since $\sigma_{p'} = \sigma_p \mid \sum_{n=1}^{n+l}$, we also have M(p) = M(p'). Let $\tau(M(p), E^{n+k})$ be the total curvature of M(p) as a submanifold of E^{n+k} . Then $$\tau_p(M, S^{n+k}) = \tau(M(p), E^{n+k}) = \tau(M(p'), L') = \tau_{p'}(M, \sum_{i=1}^{n+k}).$$ ## 6. The average total absolute curvature Let M^n be a compact oriented immersed submanifold of S^{n+k} . Define $$\bar{\tau}(M) = \int_{S^{n+k}} \tau_p(M) d\alpha^{n+k}(p) ,$$ that is, $\bar{\tau}(M)$ is the average value of $\tau_p(M)$ taken over all possible base points $p \in S^{n+k}$. **Theorem 6.** Let M^n be a compact oriented immersed submanifold of S^{k+k} . Then - $(1) \quad \bar{\tau}(M) \geq \beta(M) \geq 2,$ - (2) $\bar{\tau}(M) = 2$ if M is imbedded as a small n-sphere. *Proof.* (1) We know by Theorem 2 that for all $p \in S^{n+k}$ with $-p \notin M$, $\tau_p(M) \ge \beta(M)$. Since $\{p \in S^{n+k}: -p \in M\}$ is a set of measure zero, we have $\bar{\tau}(M) = \int_{S^{n+k}} \tau_p(M) d\alpha^{n+k} \ge \int_{S^{n+k}} \beta(M) d\alpha^{n+k} \ge \beta(M)$. (2) It is easy to show for $p \in S^{n+k}$ with $-p \notin M$ that the image of a small n-sphere under σ_p is a metric sphere in an (n+1)-dimensional plane of E^{n+k} . Hence, if M is a small n-sphere and $-p \notin M$, then $\tau_p(M) = \tau(M(p)) = 2$. Thus $\overline{\tau}(M) = 2$. q.e.d. It is natural to ask to what extend the converse of part (2) of Theorem 6 is true. If $\bar{\tau}(M)=2$, then $\tau_p(M)=2$ for all $p\in S^{n+k}$ such that $-p\notin M$. This is true since the function $p\to\tau_p(M)$ is continuous and ≥ 2 on $\{p\in S^{n+k}: -p\notin M\}$. In particular, there is at least one $p\in S^{n+k}$ with $-p\notin M$ such that $\tau_p(M)=2$. By Theorem 2 there exists a small (n+1)-sphere $\sum_{i=1}^{n+1}$ containing -p in which M is imbedded and M is homeomorphic to S^n . By Theorem 5 it follows immediately that $\bar{\tau}(M, \sum^{n+1}) = 2$, where $\bar{\tau}(M, \sum^{n+1})$ is the average total absolute curvature of M as a submanifold of \sum^{n+1} . So, to find out to what extent the converse of part (2) of Theorem 6 is true, we need only to study manifolds M^n homeomorphic to S^n , which are imbedded in S^{n+1} with $\bar{\tau}(M) = 2$. In particular, when these M^n are imbedded as small spheres. If L^n is a hyperplane of E^{n+1} , its complement $E^{n+1} \setminus L^n$ is the disjoint union of two sets D_1 and D_2 with closures $\overline{D}_i = D_i \cup L^n$, i = 1, 2. A set A in E^{n+1} has the *two-piece property* (TPP) if $A \cap \overline{D}_i$ is path connected, for either complementary component D_i , i = 1, 2, of any hyperplane L^n of E^{n+1} . If \sum^n is a metric hypersphere of S^{n+1} , its complement $S^{n+1}\setminus \sum^n$ is the disjoint union of two open sets D_1 and D_2 with closures $\overline{D}_i=D_i\cup \sum^n, i=1,2.$ A set A in S^{n+1} has the *spherical-two-piece-property* (STPP) if $A\cap \overline{D}_i$ is path connected, for either complementary component D_i , i=1,2, of any metric hypersphere \sum^n in S^{n+1} . For example, it follows from Proposition 3.1 of [1] that every metric hypersphere of S^{n+1} has the STPP. Let L^n be a hyperplane of E^{n+1} , and let $L(\varepsilon)$ equal the set of all points whose distance from L^n is less than ε . We say a set A contained in E^{n+1} is asymptotic to L^n if given $\varepsilon > 0$ there exists an R > 0 such that for all r > R, $N \setminus B_0(r) \neq \emptyset$ and $N \setminus B_0(r) \subset L(\varepsilon)$, where $B_0(r)$ is the open ball of radius r centered at the origin of E^{n+1} . **Lemma 4.** Let N^n be a complete imbedded hypersurface of E^{n+1} asymptotic to a hyperplane L^n of E^{n+1} . If N^n has the TPP, then $N^n = L^n$. *Proof.* Suppose $N^n \neq L^n$. Let d be the metric on E^{n+1} . Let $p \in N$ so that $d(p, L) = \rho$ is a maximum. Such a point exists since N is asymptotic to L. Let P equal the connected component of $\{q \in N : d(q, L) = \rho\}$, which contains p. Let K^n be the hyperplane through p at a distance ρ from L. Clearly $P \subset K$. Let the origin 0 of E^{n+1} be the base point of the perpendicular from p to L. Since N is asymptotic to L, there is a sequence of points q_i , $i=1,2,\cdots$, in N such that $\lim_{i\to\infty}\|q_i\|=+\infty$. Consider the sequence $q_i/\|q_i\|$, $i=1,2,\cdots$, in the unit sphere of E^{n+1} about 0. We may assume by taking a subsequence if necessary that $\lim_{i\to\infty}q_i/\|q_i\|=u$. Clearly $u\in L$. Note that P is bounded since N is asymptotic to L. Hence let $p'\in p$ so that $(p'-p)\cdot u=c$ is a maximum. Let I^{n-1} be the (n-1)-plane in K through p' orthogonal to u. Rotate K about I so that the unit normal to K pointing away from I rotates toward I. Let I be the complementary component of I, which does not contain I. For a small enough rotation of I, the path component of I in I is at least a distance I from I. Since I is I must also contain a point I which is closer to I than I for I sufficiently large, I does not satisfy the TPP. This is a contradiction. Hence I is I to I the same I is an incontradiction. Hence I is I to I the same I is a contradiction. Hence I is I to I the same I to I the I to I thence I is a contradiction. Hence I is I to I thence I is I to I thence I is an incontradiction. **Lemma 5.** Let M^n be a compact imbedded hypersurface of S^{n+1} . If M has the STPP with respect to all metric hyperspheres through an umbilic point of M, then M is a metric sphere. **Proof.** Let q be the umbilic point of M. Consider the stereographic projection σ from q. Then $N^n = \sigma(M \setminus \{q\})$ with metric induced from E^{n+1} is a complete imbedded hypersurface of E^{n+1} . Since M is umbilic at q, there exists a metric hypersphere \sum^n through q, which makes second order contact with M. Then $L^n = \sigma\{\sum \setminus \{q\}\}$ is a hyperplane of E^{n+1} . Let L_1 and L_2 be two hyperplanes parallel to L with one on each side of L^n . Under the stereographic projection σ , L_1 and L_2 correspond to metric spheres through q, Σ_1 , and Σ_2 , with one on each side of Σ . Since Σ makes second order contact with M at q, in a small enough neighborhood about q, M lies between Σ_1 and Σ_2 . Hence outside a large enough ball about 0 in E^{n+1} , N lies between L_1 and L_2 . It is now clear that N is asymptotic to L. Since M has the STPP with respect to all metric spheres through q, N has the TPP. Thus the hypotheses of Lemma 4 are satisfied so that N = L. Hence $M = \Sigma$, that is, M is a metric sphere. **Lemma 6.** Let M^n be a manifold homeomorphic to S^n imbedded in S^{n+1} with $\bar{\tau}(M) = 2$. If (1) $n \leq 2$ or (2) $n \geq 3$ and M has an umbilic point, then M is imbedded as a small sphere. Proof. Let $p \in S^{n+1}$ such that $-p \notin M$. Since $\bar{\tau}(M) = 2$, we have $\tau_p(M) = 2$. Thus $\tau(M(p)) = 2$, which implies that M(p) is imbedded as a convex hypersurface of E^{n+1} . In particular, M(p) has the TPP so that M has the STPP with respect to all metric spheres through -p. Hence for all $q \notin M$, M has the STPP with respect to all metric spheres through q. Since every metric sphere passes through some point not in M unless M already is a metric sphere, M has the STPP. If n = 1, then every point of M is umbilic. If n = 2, we have $\chi(M) = \chi(S^2) = 2 \neq 0$. If M did not have an umbilic point, then the second fundamental form of M in S^{n+1} determines a field of tangent line elements corresponding to, say, the larger eigenvalue of the second fundamental form. Hence, according to the comments following Theorem 40.13 in [7], $\chi(M) = 0$. For $n \geq 3$, we have assumed the existence of an ambilic point. Now apply Lemma 5 to get the result since metric hyperspheres of S^{n+1} are small hyperspheres. q.e.d. We now present an alternate proof of Lemma 6 for the cases n = 1 and n = 2. Proof (n=1). It is clear that $\bar{\tau}(M^1)$ equals the total central curvature of M^1 as defined in [2] where it is shown that the total central cuvature of a closed curve $M^1 \subset S^2$ equals the total absolute curvature of the curve as a curve in E^3 . Consequently if $\bar{\tau}(M) = 2$, then $M^1 \subset S^2$ is imbedded as a convex curve in a hyperplane in E^3 . Thus M^1 is a small circle. Proof (n = 2). Since $\tau_p(M) = 2$ for all p such that $-p \notin M$, by Theorem 4 we have $\tau_p(M) = 0$ for p with $-p \in M$. Hence if $-p \in M$, then $\tau(M(p)) = \int_{M(p)} |K| = 0$, which implies $K \equiv 0$ on M(p). Since M(p) is complete, M(p) is a generalized cylinder [6]. Also M has an umbilic point, for $\chi(M) \neq 0$ since M is a topological sphere. Hence if we choose p so that -p is the umbilic point, we also have M(p) asymptotic to a hyperplane L^n of E^{n+1} . Clearly, an imbedded generalized cylinder asymptotic to a hyperplane must be that hyperplane, so M(p) = L. Thus M is a small sphere. Using Lemma 6 and the comments at the beginning of this section, we have the following. **Theorem 7.** Let M^n be a compact oriented immersed submanifold of S^{n+k} , where $n \leq 2$. If $\bar{\tau}(M) = 2$, then M is imbedded as a small n-sphere. ## **Bibliography** - [1] T. F. Banchoff, The spherical two-piece property and tight surfaces in spheres, J. Differential Geometry 4 (1970) 193-205. - [2] —, Total central curvature of curves, Duke Math. J. 37 (1970) 281–289. - [3] S. S. Chern & R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957) 306-313. - [4] —, On the total curvature of immersed manifolds. II, Michigan Math. J. 5 (1958) 5-12. - [5] E. Kreysig, Stetige modification komplexer manigfaltigkeiten, Math. Ann. 128 (1954-1955) 479-492. - [6] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. J. 14 (1962) 73-79. - [7] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, New Jersey, 1951. - [8] J. L. Weiner, The Gauss map in spaces of constant curvature, Proc. Amer. Math. Soc. 38 (1973) 157-161. - [9] —, The Gauss map in curved manifolds, Doctoral thesis, University of California at Los Angeles, 1971. MICHIGAN STATE UNIVERSITY